Liquid Measures

Find at least one container that holds each of the amounts listed below. Describe each container and record all the measurements on the label.
(1) About 1 gallon

Container	Liquid Measurements on Label
jug of orange juice	gallon, 3.78 L

(2) About 1 quart

Container	Liquid Measurements on Label
container of milk	/ quart, 32 fl oz

(3) About 1 pint

Container	Liquid Measurements on Label

(4) About 1 cup

Container	Liquid Measurements on Label

Complete.
(5) 2 quarts $=$ \qquad pints
(6) 3 gallons = \qquad cups
(7) pints $=4$ cups
(8) quarts $=12$ cups
(9) 6 pints $=$ \qquad quarts
(10) quarts $=2 \frac{1}{2}$ gallons

Practice

(11) $273 * 2=$ \qquad
(12) $385 * 4=$ \qquad
(13)

$$
=886 * 5
$$

$$
\begin{equation*}
=98 * 38 \tag{14}
\end{equation*}
$$

Sugar in Drinks

Use the information in the table to solve the number stories. In the space below each problem, use pictures or equations to show what you did to find your answers.

Amount of Sugar in Drinks		
Drink	Sugar Content (in cups)	Serving Size (in ounces)
Cranberry juice cocktail	$\frac{1}{4}$	12
Fruit punch	$\frac{1}{4}$	12
Orange soda	$\frac{1}{4}$	12
Sweet tea	$\frac{1}{6}$	12

Sources: National Institutes of Health and California Department of Public Health
(1) Carmen drinks one 12-ounce can of orange soda every day. How much sugar is that in 1 week? \qquad cup(s)
(2) If you drink one 12-ounce glass of cranberry juice cocktail every morning, how much sugar will that be in 2 weeks? \qquad cup(s)
(3) Mike drinks three 12-ounce servings of sweet tea per day.
a. How much sugar is he drinking in his tea in 1 day?
\qquad cup(s)
b. In 5 days? \qquad cup(s)

Practice

(4) $951 * 4=$ \qquad
(5) $650 * 5=$ \qquad
(6) $425 * 7=$ \qquad
(7) $3,684 * 6=$ \qquad

Multiplying Unit Fractions

Write a multiplication equation to describe each picture or story.
(1)

Multiplication equation: \qquad
What is the fourth multiple of $\frac{1}{5}$? \qquad
(2)

Multiplication equation: \qquad
What is the third multiple of $\frac{1}{10}$? \qquad
(3) Dmitri fixed a snack for 5 friends. Each friend got $\frac{1}{2}$ of an avocado. How many avocados did Dmitri use?

Multiplication equation: \qquad
Answer: \qquad avocado(s)
(4) Juanita made 3 protein shakes. All together, she used 1 cup of protein powder to make them. Each had the same amount.

How many cups of protein powder are in each shake?
Multiplication equation: \qquad
Answer: \qquad cup(s)

Practice

(5) $\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=$ \qquad (6) $\frac{2}{3}+\frac{2}{3}+\frac{1}{3}=$ \qquad
(7) $\frac{9}{10}-\frac{4}{10}=$ \qquad (8) $\frac{8}{12}-\frac{5}{12}=$ \qquad

Multiplying Fractions by Whole Numbers

Solve the problems below.
(1) $5 * \frac{1}{5}=$ \qquad
Draw a picture.
(2) $3 * \frac{4}{9}=$ \qquad
Draw a picture.
(3) $6 * \frac{3}{6}=$ \qquad
Draw a picture.

Write a multiplication equation to represent the problem and then solve.
(4) Rahsaan needs to make 5 batches of granola bars. A batch calls for $\frac{1}{2}$ cup of honey.

How much honey does he need? Equation: \qquad
(5) Joe swims $\frac{6}{10}$ of a mile 5 days per week. How far does he swim every week?

Equation: \qquad
How far would he swim if he swam every day of the week?
Equation: \qquad

Practice

(6) $653 * 3=$ \qquad
(7) $262 * 8=$ \qquad
(8) $357 * 9=$ \qquad
(9) $7,376 * 2=$ \qquad

Multiplying Mixed
 Numbers by Whole
 Numbers

Home Link 7-5

Solve.
(1) Michelle's grandmother sent her 5 small gifts for her fifth birthday. Each one weighed $1 \frac{1}{2}$ pounds. How much did the gifts weigh all together?

Number model with unknown: \qquad

Answer: \qquad pounds

Between what two whole numbers is this? \qquad and \qquad
How many ounces did the gifts weigh? \qquad ounces
(2) Rochelle bought 4 pieces of ribbon to finish a project. Each piece was $1 \frac{5}{12}$ yards long. What is the combined length of the ribbon she bought?

Number model with unknown: \qquad

Answer: \qquad yards

Between what two whole numbers is this? \qquad and \qquad
How many feet is this? \qquad feet
(3) $3 * 4 \frac{5}{6}=$ \qquad

Between what two whole numbers is this? \qquad and \qquad
(4) $6 * 7 \frac{3}{8}=$ \qquad

Between what two whole numbers is this? \qquad and \qquad

Practice

(5) $\frac{3}{4}+\frac{2}{4}+\frac{1}{4}=$ \qquad (6) $\frac{4}{8}+\frac{3}{8}+\frac{2}{8}=$
(7) $\frac{5}{6}-\frac{2}{6}=$ \qquad (8) $\frac{88}{100}-\frac{57}{100}=$
\qquad
\qquad

Fruit Salad Weight

Mr. Chou makes fruit salad that he sells in his store. Today he plans to make a fruit salad with 8 pears, 2 cups of grapes, and 4 pints of strawberries. Use the weights

SRB 173-174 below to solve the problems.

- A medium pear weighs about $\frac{3}{8} \mathrm{lb}$.
- A cup of grapes weighs about $\frac{2}{8} \mathrm{lb}$.
- A pint of strawberries weighs about $\frac{5}{8} \mathrm{lb}$.
(1) Write a multiplication sentence to show how much the pears weigh. \qquad
Answer: \qquad pound(s)
(2) Write a multiplication sentence to show how much the grapes weigh. \qquad
Answer: \qquad pound(s)
(3) Write a multiplication sentence to show how much the strawberries weigh.
\qquad
Answer: \qquad pound(s)
(4) How much does Mr. Chou's salad weigh in all? Show your work.

Answer: \qquad pound(s)

Practice

(5) $361 / 8=$ \qquad
(7) $963 / 5=$ \qquad
(6) $396 \div 7=$ \qquad
(8) $633 / 4=$ \qquad

Division Number Stories

Solve. Show your work.
(1) Robert and Jason want to buy a group ticket package for football games.

Package A costs $\$ 276$ and includes 2 tickets for each of 6 games. Package B costs $\$ 336$ and includes 2 tickets for each of 8 games. Which package charges more per ticket? How much more per ticket?

Package \qquad charges \$ \qquad more per ticket.
(2) Rebecca wants to put 544 pennies in a coin-collection book. The blue book fits 9 pennies per page. The red book fits 7 pennies per page. How many more pages would she need if she used the red book rather than the blue one?

The red book will take \qquad more pages than the blue book.

What did you do with any remainders you found?
\qquad
\qquad
\qquad

Practice

(3)
$754 * 6=$ \qquad (4) $906 * 2=$
(5) \qquad $=831 * 7$
(6) \qquad $=84 * 29$

More Division
 Measurement Number Stories

Home Link 7-8

Read each number story. Use the information to write a number model with an unknown and then solves.
(1) Kelly is in charge of bringing water for her softball game. The 8 members of the team have matching team water bottles that hold 500 mL . Kelly buys 5 liters of water at the store. If she fills all the bottles, how many milliliters of water will Kelly have left?

Number model with unknown: \qquad
Answer: \qquad milliliters
(2) The distance around all the bases in softball is 72 meters. If Kelly hits 2 home runs and runs around the bases twice, how many millimeters will she run?

Number model with unknown: \qquad
Answer: \qquad millimeters
(3) In women's softball the pitcher stands about 13 meters from the batter's box. In men's softball the pitcher stands about 1,400 centimeters from the batter's box. About how many more centimeters is it from the men's pitcher to the batter's box than from the women's pitcher to the batter's box?

Number model with unknown: \qquad
Answer: About \qquad centimeters
(4) The 6 games Kelly's team played took a total of 7 hours.
a. How many minutes total did they play softball?

Number model with unknown: \qquad
Answer: \qquad minutes
b. If each game lasted the same amount of time, how many minutes did each one last?

Number model with unknown: \qquad
Answer: \qquad minutes

Practice

(5) $1 \frac{3}{6}+2 \frac{1}{6}=$ \qquad (6) $4 \frac{3}{5}+5 \frac{4}{5}=$
(7) $7 \frac{5}{12}-2 \frac{3}{12}=$ \qquad (8) $6 \frac{1}{3}-2 \frac{2}{3}=$
\qquad
\qquad

Perimeter Patterns

Alice was making squares out of toothpicks.
She noticed a pattern involving the length of one side and the perimeter of the square. Complete the table and then answer the questions that follow.

Side Length	Perimeter
1	4
2	
	12
4	
	20

(1) What rule describes the relationship between the length of one side and the perimeter of a square?
(2) What would be the perimeter of a square with a side length of 25 toothpicks?
\qquad toothpicks
(3) What would be the side length of a square with a perimeter of 500 toothpicks?
\qquad toothpicks
(4) Describe at least two other patterns you notice in the table \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Practice

(5) $753 \div 3=$ \qquad (6) $-386 \div 2$
(7) $283 \div 9 \rightarrow$ \qquad (8) $505 \div 6 \rightarrow$ \qquad

Fitness Challenge

Use the information in the table below to solve the number stories.
During Marcy School's 2-week challenge, each student who meets a goal wins a prize.

Marcy's Fitness Challenge Goals			
Activity	Total Distance	Activity	Total Distance
Walking	6 miles	Bike Riding	6 miles
Swimming	1 mile	Running	4 miles

(1) Tony will run $\frac{1}{2}$ mile after school each day. Will he win a prize? \qquad
a. Distance run in 1 week: \qquad mile(s)
b. In 2 weeks: \qquad mile(s)

Explain how you found your answer.
\qquad
\qquad
(2) Three times a week, Tina walks $\frac{3}{10}$ mile from school to the library, studies for 1 hour, and then walks $\frac{4}{10}$ mile home. How much more will she need to walk to win a prize?
\qquad mile(s)

Explain how you found your answer.
\qquad
\qquad
\qquad

Practice

(3) $642 \div 2=$ \qquad
(4) $386 / 9 \rightarrow$ \qquad
(5) $739 / 5 \rightarrow$ \qquad (6) $4 \longdiv { 8 2 9 } \rightarrow$ \qquad

Fractions and Mixed Numbers

Home Link 7-11

Solve. Draw a picture or show how you solved the problem.
(1) $5 * \frac{3}{5}=$ \qquad
(2)

$$
=4 \frac{2}{6}-2 \frac{4}{6}
$$

(3) $5 \frac{7}{8}+3 \frac{1}{8}=$ \qquad
(4) \qquad $=3 * 4 \frac{1}{4}$
(5) The combined weight of an assortment of fruit is $8 \frac{3}{4}$ pounds. When the fruit is on a tray, the tray weighs $10 \frac{1}{4}$ pounds. How many pounds does the tray weigh when empty? \qquad pound(s)

How many ounces does the tray weigh when empty? \qquad ounce(s)
(6) $\left(3 * 2 \frac{2}{3}\right)+\left(2 * 4 \frac{1}{3}\right)=$ \qquad

Practice

(7) $3 \longdiv { 3 5 0 }$
(8) $6 \longdiv { 8 3 2 }$
(9) $7 \longdiv { 2 9 5 }$
(10) $9 \longdiv { 5 8 2 }$

Shopping for Bargains

Solve each number story and show how you solved the problems.
(1) Phil wants to buy some Creepy Creature erasers that cost $\$ 1.05$ each.

If he buys 5 or more, the price is $\$ 0.79$ each. If he decides to buy 7 erasers, how much will he spend?

Answer: \$ \qquad
(2) Mrs. Katz bought 3 pounds of apples and a muffin for snacks. The apples cost $\$ 2.59$ per pound if you buy less than 3 pounds and $\$ 2.12$ per pound if you buy 3 or more pounds. The muffin cost $\$ 1.95$. How much did she spend?

Answer: \$ \qquad

Try This

(3) Mrs. Katz paid with a $\$ 10$ bill. How much change did she get back?

Answer: \$ \qquad

Practice

Fill in the blanks with $>,<$, or $=$.
(4) 0.55 \qquad 0.65
(5) 0.3 \qquad 0.30
(6)
0.72 \qquad 0.8
(7) 0.4 \qquad 0.31

Pencil Lengths

At the beginning of the year Mrs. Kerry gave each student in her class a new pencil with "Welcome to 4th Grade" written on it. A month later the class measured their pencils to the nearest $\frac{1}{8}$ inch.
Pencil Lengths to the Nearest $\frac{1}{8}$ inch

$2 \frac{1}{8}$	$3 \frac{1}{8}$	$2 \frac{7}{8}$	$2 \frac{4}{8}$	$3 \frac{3}{8}$	$2 \frac{7}{8}$	3	$2 \frac{5}{8}$	$2 \frac{5}{8}$	$2 \frac{7}{8}$	$3 \frac{3}{8}$	$2 \frac{6}{8}$	$2 \frac{4}{8}$
$2 \frac{3}{8}$	$2 \frac{7}{8}$	$1 \frac{7}{8}$	$3 \frac{2}{8}$	$2 \frac{7}{8}$	$3 \frac{4}{8}$	$2 \frac{6}{8}$	$2 \frac{3}{8}$	$3 \frac{1}{8}$	2	$2 \frac{4}{8}$	$2 \frac{5}{8}$	$3 \frac{2}{8}$

Plot the data set on the line plot.

Title:

Pencil Lengths

(continued)

Use the completed line plot to answer these questions.
(1) How many students have a pencil that is shorter than $2 \frac{7}{8}$ inches?
\qquad students
(2) What is the most common pencil length? \qquad inches
(3) a. How many pencils are less than $2 \frac{2}{8}$ inches long? \qquad pencils
b. What is their combined length? \qquad inches
(4) a. How many pencils are between $2 \frac{7}{8}$ and $3 \frac{2}{8}$ inches long? \qquad pencils
b. What is their combined length? \qquad inches
(5) a. How long is the longest pencil? \qquad inches
b. How long is the shortest pencil? \qquad inches
c. What is the combined length of the longest and shortest pencils? \qquad inches
d. What is the difference in length of the longest and shortest pencils?
\qquad inches

Practice

(6) $2 \frac{1}{4}+5 \frac{2}{4}=$
(8) $3 \frac{7}{8}-1 \frac{3}{8}=$ \qquad
(7) $8 \frac{5}{10}+3 \frac{7}{10}=$ \qquad
(9) $7 \frac{41}{100}-3 \frac{51}{100}=$ \qquad

