Exploring Square Numbers

A square number is a number that can be written as the product of a number multiplied by itself. For example, the square number 9 can be written as $3 * 3$.

(1) Fill in the missing factors and square numbers.

Factors	Square Number
	4
$3 * 3$	9
$4 * 4$	25
	36

(2) What pattern(s) do you see in the factors? In the products?
\qquad
\qquad
(3) What other pattern(s) do you see in the table?
\qquad
\qquad
(4) Write an equation to describe each array.

Equation: \qquad

Equation: \qquad
(5) a. Which of the arrays above shows a square number? \qquad
b. Explain.

Practice

(6) $32,45,58$, \qquad , \qquad , \qquad

Rule: \qquad
(7)
\qquad , \qquad , \qquad $89,115,141$

Rule: \qquad

Area of a Rectangle

(1) Draw a rectangle that has length of 9 units and width of 4 units.

Equation: \qquad
Area $=$ \qquad square units

Home Link 2-2
NAME
(2) Draw a rectangle that has a length of 7 units and a width of 8 units.

Equation: \qquad
Area $=$ \qquad square units

Use the formula $A=I * w$ to find the area of each rectangle.

(5) Riley's dining room tabletop is 9 feet long and 6 feet wide. What is the area of the tabletop?

Equation: \qquad
Area $=$ \qquad square feet

Practice

(6) $368-59=$ \qquad (7) $194-147=$ \qquad
(8) \qquad $=1,729-623$

Working with
 Factor Pairs

(1) Write equations to help you find all the factor pairs of each number below.

Use dot arrays, if needed.

Practice

(2) $356+433=$
(3)
$=2,167+696$
(4) \qquad $=4,578-2,232$
(5) $3,271-1,089=$ \qquad

Finding Multiples

(1) List the first 5 multiples of 4 .
(2) List the first 10 multiples of 2 . \qquad
(3) a. List the first 10 multiples of 3 . \qquad
b. List the first 10 multiples of 5 . \qquad
c. List the multiples of 3 that are also multiples of 5 . \qquad
(4) Is 28 a multiple of 7 ? \qquad Explain. \qquad
(5) Is 35 a multiple of 6? \qquad Explain. \qquad
\qquad
(6) a. List the factors of 15 . List the multiples through 15 of each factor.

Factors of 15	Multiples of the Factors (of 15)

b. Is 15 a multiple of each of its factors? \qquad Explain. \qquad
\qquad

Practice

(7) 24 \qquad 48, \qquad 72,

Rule: \qquad
(8) \qquad , 108, 162, \qquad 270, \qquad Rule: \qquad
(9) 86 , \qquad 52, \qquad , 18, \qquad Rule: \qquad
(10) 425, \qquad , 339, \qquad 253, \qquad Rule: \qquad

Prime and Composite Numbers

A prime number is a whole number that has exactly two different factors-1 and the number itself. A composite number is a whole number that has more than two different factors.

For each number:

- List all of its factors.
- Write whether the number is prime or composite.
- Circle all of the factors that are prime numbers.

Number	Factors	Prime or Composite?	
(1)	11		
(2)	19		
(3)	24		
(4)	29		
(5)	36		
(6)	49		
(7)	50		
(8) 70			
(9)	100		

Practice

Solve.
(10) $841+527=$ \qquad
(11) \qquad
(12) $7,461+2,398=$ \qquad
(13) \qquad $=4,172-3,236$
(14) $8,158=5,071+$ \qquad (15) $3,742-3,349=$ \qquad

Using Multiplication

Home Market sells 3 grapefruits for $\$ 2$.
(1) Darius spent $\$ 6$ on grapefruits. How many did he buy? Use words, numbers, or diagrams to show your reasoning.
\qquad grapefruits
(2) Jana bought 15 grapefruits. How much did she spend? Use words, numbers, or diagrams to show your reasoning.
\qquad dollars
(3) On the back of this page, write a multiplication number story about buying grapefruits at Home Market. Show how to solve your number story.

Practice

Write these numbers using words.
(4) 12,309 \qquad
(5) 30,041 \qquad
(6) 600,780 \qquad
(7) $9,090,506$ \qquad

Converting Units of Time

Use the measurement scales to fill in the tables and answer the questions.
minutes

hours
 minutes
(1)

Hours	Minutes
1	60
4	
8	
11	

Minutes	Seconds
1	60
5	
10	
20	

(3) Zac worked on his spelling for 9 minutes last night and 8 minutes this afternoon. How many seconds did he work? Answer: \qquad seconds
(4) Eton's baby sister took a nap for 2 hours and 22 minutes yesterday and 1 hour and 35 minutes today. How many more minutes did she sleep yesterday than today? Answer: \qquad minutes

Try This

(5) How many seconds did Eton's baby sister sleep all together?

Answer: \qquad seconds

Practice

(6) $945+1,055=$ \qquad (7) $2,953+4,471=$
(8) $4,552+4,548=$ \qquad (9) $3,649+3,649=$
\qquad

Multiplicative Comparisons

Family Note In this lesson students used comparison statements and equations to represent situations in which one quantity is a number of times as much as another quantity. For example: José saved $\$ 5$ over the summer. His sister saved 3 times as much. How much money did José's sister save? In this number story students compare the amount of money José saved to the amount his sister saved. Students write the equation $3 * 5=15$ to represent this comparison and solve the problem: José's sister saved $\$ 15$. Because these comparison statements and equations involve multiplication, they are called multiplicative comparisons.

Complete the problems below. Write an equation with a letter for the unknown and solve.
(1) What number is 7 times as much as 9?

Equation with unknown:

Answer: \qquad
(2) What number is 5 times as much as 6 ?

Equation with unknown:

Answer: \qquad
(3) 32 is 4 times as much as what number?
a. Equation with unknown: \qquad
b. Answer: \qquad
(4) Write an equation to represent this situation and solve.

Ameer worked 3 times as many hours as Simi each week during the summer. If Simi worked 10 hours each week, how many hours did Ameer work each week?
a. Equation with unknown: \qquad
b. Answer: \qquad hours

Practice

(5)
$7,482-7,083=$ \qquad (6) $7,702-3,581=$ \qquad
(7) \qquad (8) $8,002-5,403=$ \qquad

Solving Multiplicative Comparison Number Stories

Home Link 2-9

NAME

Make a diagram or drawing and write an equation to represent the situation.
Then find the answer.
(1) Judith collected 9 marbles. Swen has 6 times as many. How many marbles does Swen have?

Diagram or drawing:

Equation with unknown: \qquad
Answer: \qquad marbles
(2) Sol ran 4 times as many minutes as Jerry. Jerry ran 12 minutes. How many minutes did Sol run?

Diagram or drawing:

Equation with unknown: \qquad
Answer: \qquad minutes

Insert quantities into the number story. Make a diagram and write an equation to represent the story.
(3) Lola picked \qquad apples. Eilene picked \qquad apples. Eilene picked \qquad times as many apples as Lola.

Diagram or drawing:

Equation with unknown: \qquad
Answer: \qquad apples

Practice

Write these numbers in expanded form.
(4) 3,830 \qquad
(5) 56,037 \qquad
(6) 800,700 \qquad
(7) 716,305 \qquad

Identifying Triangles

		 F

Write the letter or letters that match each statement.
(1) Has perpendicular line segments \qquad
(2) Has an obtuse angle \qquad
(3) Has right angles \qquad
(4) Has acute angles \qquad
(5) Has more than one kind of angle
(6) Has only one kind of angle \qquad
(7) Does NOT have any right angles \qquad
(8) Is a right triangle \qquad

Practice

(9) List all the factors of 12 .
(10) Name the next 4 multiples of 7 .

35, \qquad
\qquad \longrightarrow,

Drawing Quadrilaterals

Home Link 2-11

(1) A parallelogram is a quadrilateral that has 2 pairs of parallel sides. Draw a parallelogram.

(2) Answer each question, drawing pictures on the back of this page to help you.
a. Can a parallelogram have right angles? \qquad Explain.
\qquad
\qquad
b. Could a quadrilateral have 4 obtuse angles? \qquad Explain.
\qquad
\qquad
c. Name a quadrilateral that has at least 1 pair of parallel sides.
(3) Draw a quadrilateral that has at least 1 right angle.

(4) Draw a quadrilateral that has 2 separate pairs of equal length sides but is NOT a parallelogram.

This is called a \qquad .

Practice

(5) $5 * 30=$
(6) $=40 * 3$
(7) $\square=80 * 6$
(8) $6 * 70=$ \qquad

Drawing Lines of Symmetry

(1) Draw the other half of each picture to make it symmetrical. Use a straightedge to form the line of symmetry.

(2) Draw a line of symmetry for each figure.

(3) List four items in your home that are symmetric. Pick one item and draw it below, including at least one line of symmetry.

Item: \qquad Item: \qquad Drawing:

Item: \qquad Item: \qquad

Practice

(4) \qquad $=2,767+3,254$
(5) $193+6,978=$ \qquad
(6)
$7,652-5,388=$ \qquad (7) \qquad

Identifying Patterns

Home Link 2-13
NAME
(1) Complete.

What patterns do you see?
\qquad
\qquad
\qquad
\qquad
(3) Study the pattern.

4
5
a. Draw the next step in the pattern. What patterns do you notice?
\qquad
\qquad
b. How many circles will be in the 6th step? \qquad In the 10th step?
c. How did you figure out how many circles will be in the 10th step?
\qquad
\qquad

Practice

(4) $800,000+90=$ \qquad (5) $200,000+50,000+4=$
\qquad

