Place Value in Whole Numbers

Family Note In this lesson your child explored the relationships between place values in numbers. Have your child read each number below. Examine the digit 6 in each number.

Hundred- Thousands	Ten- Thousands	Thousands	Hundreds	Tens	Ones
600,000	60,000	6,000	600	60	6

When the digit 6 moves left one place, its value becomes 10 times as large as it was in the previous place. For example, 60 is 10 times as large as 6 , and 600 is 10 times as large as 60.

\qquad .

b. The 6 in 56,143 is worth \qquad | SRB |
| :---: |
| 789 |

c. The 7 in 573,090 is worth \qquad . d. The 1 in 140,007 is worth \qquad .
(2) How does the value of the digit 4 in 489 differ from the value of the digit 4 in 5,741 ?
\qquad
a. The value of 8 in 56,982 is \qquad times as large as the value of 8 in 156,408.
b. The value of 8 in 800 is \qquad times as large as the value of 8 in 80 .
c. The value of 9 in 4,934 is \qquad times as large as the value of 9 in 1,290.
(4)
a. Write the number that has . . .

7 in the thousands place
6 in the ten-thousands place
5 in the hundreds place
8 in the ones place
3 in the tens place
\qquad ,
b. On the back of this page, write this number in words.

Practice

(5) $9+8=$ \qquad (6) $7+8=$ \qquad (7) $30+80=$ \qquad
(8) $工=50+40$
(9) \qquad $=17+94$
(10) $158+93=$ \qquad

Country Sizes

This table shows the sizes of 10 countries measured in square miles.

Use a place-value tool to help you answer the questions.
(1) Read the numbers to someone at home.
(2) Which is the largest country listed?
\qquad

The smallest? \qquad | SRB |
| :---: |
| 81 |

Country	Area (in square miles)
Algeria	919,600
Colombia	439,700
Ethiopia	426,400
Egypt	386,700
Greece	50,900
Iran	636,400
Laos	91,400
Peru	494,200
Uganda	93,100

Source: worldatlas.com (All data rounded to nearest hundred.)
(3) Compare the areas of Laos and Uganda.
a. Which country has the larger area? \qquad How do you know?
\qquad
\qquad
b. Write a comparison number sentence.
(4) Order the countries from largest area to smallest area.

Country	Area (in square miles)

Practice

(5) $140-60=$ \qquad (6) $=57-39$
(7) $115-86=$
\qquad

Rounding

(1) Round the seating capacities in the table below to the nearest thousand.

Women's National Basketball Association (WNBA) Seating Capacity of Home Courts		
Team	Seating Capacity	Rounded to the Nearest 1,000
Chicago Sky	17,500	
Connecticut Sun	9,518	
Indiana Fever	18,165	
Los Angeles Sparks	13,141	
Minnesota Lynx	19,356	
Phoenix Mercury	18,422	
Seattle Storm	17,072	
Tulsa Shock	17,839	
Washington Mystics	20,308	

Source: www.wnba.com
(2) Look at your rounded numbers. Which teams' arenas have about the same capacity?
(3) Round the population figures in the table below to the nearest hundred-thousand.

U.S. States with the Five Smallest Populations (2010 Census)		
State	Population	Rounded to the Nearest 100,000
Wyoming	563,626	
Vermont	626,011	
North Dakota	699,628	
Alaska	731,449	
South Dakota	833,354	

Practice

(4) \qquad $=60+60$ \qquad $=54+59$
(6) $185+366=$
\qquad

Professional Sports Attendance

Home Link 1-4

The table below shows the attendance for various 2013-2014 professional sports teams. Use the table and a place-value tool to answer the questions.

	Chicago*	New York*†	Philadelphia	Boston	Washington
Hockey	927,545	738,246	813,411	720,165	740,240
Baseball	$2,882,756$	$3,542,406$	$3,565,718$	$3,043,003$	$2,370,794$

Source: ESPN NHL Attendance report 2013-2014 and ESPN MLB Attendance report 2012
*Baseball attendance is for the Chicago Cubs and the New York Yankees.
${ }^{\dagger}$ Hockey attendance is for the New York Rangers.
(1) Which sport had the greater attendance? \qquad
(2) Round the attendance at the hockey games.

	Nearest 100,000	Nearest 10,000
Chicago		
New York		
Philadelphia		
Boston		
Washington		

(3) Round the attendance for each baseball team to the nearest million.

Chicago: \qquad -

Philadelphia: \qquad New York: \qquad

Washington: \qquad
(4) List the cities in order from greatest to least hockey attendance.
(5) Write a number sentence comparing the greatest and least baseball attendances. Use $<,>$, or $=$.
\qquad

Practice

(6) $210-150=$ \qquad (7) $140-80=$ \qquad (8) $93-58=$ \qquad

Using Estimation Strategies

Family Note Today students explored different ways of estimating: rounding (in which all numbers are rounded to a particular place value), front-end estimation (all digits to the right of the greatest place value become zeros), and using close-but-easier numbers (numbers are rounded to a number that is close in value and easy to work with). While all methods of estimation are equally valid, some may be more helpful than others for answering specific kinds of questions.

Read the number stories. Choose an appropriate estimation strategy.
(1) On the walk home from school, Meg stopped at the library for 22 minutes and at her grandmother's house for 38 minutes. She spent 17 minutes walking. She left at 3:00 and was supposed to be home by 4:00.
a. Did Meg make it home on time? \qquad How did you get your answer?
\qquad
\qquad
b. Why did you choose your estimation strategy? \qquad
\qquad
\qquad
(2) You and two friends need to make 100 tacos for a party. You have made 31 tacos. Your friend Chris has made 24 tacos. Your friend Pat thinks he needs to make at least 60 tacos to have enough for the party.
a. Is Pat correct? \qquad How did you get your answer?
\qquad
\qquad
b. Why did you choose your estimation strategy? \qquad
\qquad
\qquad

Practice

(3) $31+51=$ \qquad
(4) $45+64=$ \qquad
(5) $252+144=$ \qquad

Animal Number Stories

Estimate. Then solve each number story.
(1) The zoo needs to move four animals in a truck that can carry only 700 pounds. A leopard can weigh up to 176 pounds. A warthog can weigh up to 250 pounds. A chimpanzee can weigh as much as 130 pounds. What is the maximum weight that the fourth animal can be?

Estimate: About \qquad pounds

Answer: \qquad pounds

Number model with answer: \qquad
Does your answer make sense? \qquad How do you know?
\qquad
\qquad
(2) The combined weight of a mountain lion, an orangutan, and a wolf can be as much as 491 pounds. If the wolf weighs 175 pounds and the orangutan weighs 180 pounds, how much do two mountain lions weigh?

Estimate: About \qquad pounds

Answer: \qquad pounds

Number model with answer: \qquad
Does your answer make sense? \qquad How do you know?
\qquad
\qquad
Source: maximum animal weights from www.nationalgeographic.com

Practice

(3) $5+8=$ \qquad
(4) $9+6=$ \qquad
(5) $70+50=$ \qquad
(6) \qquad $=80+50$
(7) $67+94=$ \qquad
(8) \qquad $=425+275$

U.S. Traditional Addition

Home Link $1-7$

Family Note In today's lesson students were introduced to U.S. traditional addition.
The steps are listed below.

Step 1
Add the $1 \mathrm{~s}: 9+7=16$.
16 ones $=1$ ten and 6 ones
Write 6 in the 1 s place below the line.
Write 1 above the digits in the 10 s place.

Step 2

Add the $10 \mathrm{~s}: 7+4+1=12$.
12 tens $=1$ hundred +2 tens
Write 2 in the 10 s place below the line.
Write 1 in the 100 s place below the line.

Make an estimate. Write a number model to show what you did. Then solve using U.S. traditional addition. Compare your answer with your estimate to see if your answer makes sense.

(1) $\begin{array}{r}36 \\ +46 \\ \hline\end{array}$ Estimate:	(2) $\begin{array}{r}47 \\ +95 \\ \hline\end{array}$ Estimate:	(3) $784+889=$ Estimate: \qquad
(4) $\begin{array}{r}689 \\ +839 \\ \hline\end{array}$	(5) $279+1,795=$ Estimate:	(6) $3,746+6,255=$ Estimate:

Practice

(7) Round 2,787 to the nearest . . .
hundred \qquad thousand \qquad
(8) Round 54,681 to the nearest . . .
thousand \qquad
\qquad

Grouping by
 Multiples of 10

Alfie is ordering table tennis balls for the recreation center. A box holds 10 balls. A carton of table tennis balls holds 10 boxes.

Box of table tennis balls

Carton of table tennis balls

(1) How many table tennis balls are in one carton? \qquad
(2) Alfie ordered 7 cartons and 3 boxes of table tennis balls. How many balls did he order? \qquad
Show how you know your answer is correct.
(3) Explain how the cartons and boxes for table tennis balls are like the digits for numbers in our base-10 number system.

Practice

(4)
$440+294=$ \qquad (5) $166+707=$ \qquad
(6) \qquad $=425+886$
(7) $1,474+529=$ \qquad

U.S. Traditional Subtraction

Family Note In today's lesson students were introduced to U.S. traditional subtraction. The process is shown below for the problem 653-387.

Step 1:

Start with the ones. Trade 1 ten for 10 ones. Subtract the ones.

$100 s$	$10 s$	$1 s$
	4	13
6	5	$\not 2$
$-\quad 3$	8	7

Step 2:

Go to the tens. Trade
1 hundred for 10 tens.
Subtract the tens.

$100 s$	$10 s$	$1 s$
	14	
5	4	13
8	5	$\not 2$
$-\quad 3$	8	7
		6

Step 3:

Go to the hundreds.
We don't need to regroup, so just subtract.

$100 s$	$10 s$	$1 s$
	14	
5	4	13
8	5	$\not 2$
$-\quad 3$	8	7
2	6	6

Make an estimate. Write a number model to show what you did. Then solve using U.S. traditional subtraction. Compare your answer with your estimate to see whether your answer makes sense.

(1) $\begin{array}{r}85 \\ -38 \\ \hline\end{array}$ Estimate:	(2) $\begin{array}{r}613 \\ -249 \\ \hline\end{array}$ Estimate: \qquad	(3) $506-187=$ Estimate:
(4) $951-695=$ Estimate: \qquad	(5) $\begin{array}{r}1,544 \\ -\quad 749 \\ \hline\end{array}$ Estimate:	(6) $7,003-4,885=$ Estimate: \qquad

Practice

(7)
$740+294=$ \qquad (8) $2,566+807=$ \qquad

Snake Lengths

Use the measurement scales to solve the problems.

(1)

Feet	Inches
1	
6	
8	
12	

(2) | Yards | Feet |
| :---: | :---: |
| 1 | |
| 3 | |
| 8 | |
| 16 | |

(3) The king cobra can measure a little over 4 yards in length. The black mamba can reach a length of almost 5 yards. What is the combined length of the two snakes in feet?

Answer: \qquad feet
(4) The Burmese python can be anywhere from 16 to 23 feet long. What is the difference in length in inches between the longest and shortest Burmese python?

Answer: \qquad inches

Practice

(5) Write 4,857 in words.
\qquad
(6) Write 14,066 in words.

Line Segments, Lines, and Rays

Home Link 1-11

(1) List at least 5 things in your home that remind you of line segments.
\qquad
\qquad
\qquad
Use a straightedge to complete Problems 2 and 3.
(2) a. Draw and label line $E F$.
b. Draw and label line segment $E F$.
c. Explain how your drawings of line $E F$ and line segment $E F$ are different.
\qquad
\qquad
(3)
a. Draw and label ray $S R$.
b. Anita says ray $S R$ can also be called ray $R S$. Do you agree? Explain.
(4)

Name the parallel line segments.

Practice

(5)
$\begin{array}{r}964 \\ -348 \\ \hline\end{array}$
(6)
$\begin{array}{r}662 \\ -497 \\ \hline\end{array}$
(7)

$$
\begin{array}{r}
2,423 \\
-1,491 \\
\hline
\end{array}
$$

Use a straightedge to draw the geometric figures.
(1) Draw 2 examples of a rectangle.

(2) Draw 2 examples of a right triangle.

| |
| :--- |
| |
| |

(3) How are the shapes in Problems 1 and 2 similar? How are they different?
\qquad
\qquad
a. Draw right angle $D E F$.
(5) Draw an angle that is larger than a right angle. Label the vertex K.
b. What is the vertex of the angle? Point \qquad
c. What is another name for $\angle D E F$? \qquad

Practice

Use U.S. traditional subtraction.
(6) $-756-348$
(7) $700-450=$ \qquad
(8) $7,942-3,887=$ \qquad

Family Note In class, students developed some rules, or formulas, for finding the perimeter of a rectangle. Here are three possible formulas:

- Add the measures of the four sides: perimeter of a rectangle $=$ length + length + width + width. This formula can be abbreviated as: $p=I+I+w+w$.
- Add the two given sides and double the sum: perimeter of a rectangle $=2 *$ (length + width). This formula can be abbreviated as: $p=2 *(l+w)$.
- Double the length, double the width, and then add: perimeter of a rectangle $=(2 *$ length $)+$ ($2 *$ width). This formula can be abbreviated as: $p=2 l+2 w$.

In all of the formulas, the letter p stands for the perimeter of a rectangle, the letter I stands for the length of the rectangle, and the letter w stands for the width of the rectangle.

Find the perimeters of the rectangles below.
(1)

Perimeter: \qquad feet
(3)

Perimeter: \qquad feet

Perimeter: \qquad inches
(4)

Perimeter: \qquad inches
(5) The perimeter of a garden is 42 feet. The length is 15 feet. What is the width?

Width: \qquad feet

Practice

Round each number to the nearest ten-thousand and hundred-thousand.
(6)

421,492 \qquad
\qquad
(7)

895,531 \qquad
\qquad

